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NOMENCLATURE 

outer diameter of inner cylinder of annulus ; 
inner diameter of outer cylinder of annulus; 
Grashof number; 
Grashof number based on r,,, In (r&i); 
acceleration due to gravity ; 
heat-transfer coefficient at rI ; 
heat-transfer coefficient at rz ; 
thermal conductivity; 
effective conductivity of heat ; 
wetted perimeter of annulus ; 
Nusselt number; 
mean Nusselt number ; 
Prandtl number ; 
Rayleigh number; 
outer radius of inner cylinder of annulus ; 
inner radius of outer cylinder of annulus ; 
heat-transfer rate by conduction only ; 
heat-transfer rate by convection ; 
sectional area of annulus. 

Greek symbols 

BP coefficient of expansion ; 
4 gap width = rz - r,; 
e 1, higher temperature at ri ; 
0 27 lower temperature at r2 ; 
9 ItI, mean temperature = (6, + &l/2; 
v, kinematic viscosity. 

Subscripts 
1, inner cylinder; 
2, outer cylinder. 

INTRODUCTION 

THWE have been experimental investigations [l--10] on 
natural convection heat transfer in horizontal cylindrical 
annuli. Furthermore, several numerical solutions for this 
problem have been obtained recently [l&12] using large 
digital computers. However it is still impossible to solve the 
problem analytically because boundary-layer approxima- 
tion cannot be applied. So a method of correlating heat- 

transfer coefficients has not yet been established, and various 
correlations have been proposed by many authors. 

C. Y. Liu et al. [3] used k,/k as an expression of the heat- 
transfer parameter, where k, is the effective conductivity of 
heat and k is the thermal conductivity of fluid. And they used 
the gap width 6 or the outer diameter of the inner cylinder 
D, as a characteristic length of the Grashof number Gr 
same as Beckmann [i] or Kraussold [2] did. The coordinate 
system for this problem is shown in Fig. 1. Grigull et al. [4] 
used the gap width 6 as a characteristic length of the mean 

FIG. 1. Horizontal cylindrical annulus and co-ordinate 
system. 

Nusselt number % and also of the Grashof number Gr,. 
Lis [6] used kJk as an expression of the heat-transfer 
parameter, and showed experimentally that k,/k is a func- 
tion of X = Ra,,(l - D,/D,)6’5, where RaD, is the Rayleigh 
number with D, as a characteristic length. 

Thus, each investigator correlates his results in a different 
way, but none of them is a perfect expression which has a 
physical meaning. The authors of this paper intend to define 
clearly the Nusselt number and to propose a new characteris- 
tic length of the Grashof number. 
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1. Nusselt nun&r 
THEORY and is found to be 

From the definition of the effective conductivity of heat 
k, [l, 61, the ratio kc/k represents the ratio QEOnVjQEMd. As k k 

ta) 
Qc L-56 

in the case of natural convection in a rectangular enclosure, 
it is reasonable to define the mean Nusselt number lif; as 

In the region of conduction only, the mean Nusselt number 

the ratio Qeonv/Qem+ Defining the mean Nusselt number f;jii 
defined above becomes unity. On the other hand, the local 

as above, the next relationship is obtained: 

kc _ !&? = G = .--- (mean heat-transfer coef.) x (characteristic length) 

k - Qconc, 
.----_ ---- --_...___----_ 

(thermal conductivity) 
(1) 

s/o, r,/r2 8/D, t-,/r 
3- * 0.15 o-77 v I.08 0.32 

x 0.32 0.61 0 1.45 0.26 
0 0.48 O-51 l I.95 0.20 

LJ 0.55 o-40 A 2.65 O-16 
0 0.73 0.41 
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FIG. 2. Correlation of heat-transfer coefficients by Gribuil et at. [4]. 

The characteristic length in the Nusselt number depends on 
the radius where the heat-transfer coefficient is calculated. 
Suppose that the mean heat-transfer coefficient is calculated 
at the inner radius of the outer cylinder r2, the heat-transfer 
rate by convection becomes 

Q Oonr = li2.2~d4 - e,) 0 

where & is the mean heat-transfer coefficient at r2. The heat- 
transfer rate by pure conduction Qeond becomes 

Substituting equations (2) and (3) in equation (I), the mean 
Nusselt number fJ; obtained is 

As mentioned abov% the mean NW& number calculated 
at the outer radius of the inner cylindtz r1 becomes 

Nusselt number at r3 can be defined as 

and also the local Nusselt number at rt becomes 

Nu 

r* 
= h, . Irk In(r2ir,)l 

k . 

Thus the characteristic length in the local Nusselt number 
depends on the radius where the heat-transfer coeflicient is 
calculated. 

2. Gr~hof nuntber 
The reason that many of previous investigators selected 

the gap width S as a characteristic length of the Grashof 
number is thought to be related with the forced convection 
heat transfer in annuli ln such a case, the characteristic 
length is generally defined as the hydraulic diameter d, which 
is the ratio of four times the sectional area (4s) to the wetted 
perimeter I as follows, 

d, = 3 = 4n(r$ - 7:) 
1 2tir, + pi) 

= 2s. 
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:. r, = 6. (10) 

However, it is not adequate to use S as d characteristic length 
of natural convection in horizontal cylindrical annuli, 
because the flow pattern in annuli is completely different. 
Therefore the authors intend to propose another characteris- 
tic length It is stated that the temperature of a tluid reaches 
an average temperature f7, = (@, + @J/2 at the radius r,,, in 
the case of pure heat conduction From equation (3) it 
becomes 

(ZCo,,d = 

2x/#, - 8,) 2x&B, - 0,) 
=A- 

In (r2/r1) ln(rir,) ’ 
(11) 

rm = JCr, r2h (12) 

that is, the radius r,,, is the geometric mean of ri and rz. It is 
well known from previous inv~tigations that the heat- 
transfer coeffrciem by natural convection increases with an 
increase in the gap width S, even if the annuli have the same 
r_. In order to include the effect of the gap width, the authors 
selected the combined form of r, and ln(rJrr) as a 
characteristic length of the Grashof number as follows, 

r, . In (rzjr,) = (Jrir,) . In WI). (13) 

It seems reasonable to select this group, because in the 
limiting case for rr = rP the characteristic length r, . ln(rdr,) 
approaches 6 which is adequate as a characteristic length 
for heat transfer between two parallel plates with a gap 
width 6. Consequently the Grashof number is defined as 
follows, 

Gr 

In 

= dw - 0,) [r, In (rdr,)l” 
V2 

(14) 

Air 
I, II‘ II /<z 

Pr x 0.71 0 om2 A O-48 0 

x 0.61 q 0.41 . 

0 O-51 v O-32 A 

IO 

5 

I 2” 3 
i 

RESULTS 

As mentioned in the introduction, Grigull et al. [4] 
correlated their experimental data by using Nu, and Gr, as 
shown in a table in their paper. Nu, and Gr, can be converted 
to the Gand Gr,,, defined in this paper using the following 
equations 

(15) 

Gr,,, =(;ln(rJr,)>i.Gr+ (16) 

The rearrangement of their dam using % and Gr,,, is shown 
in Fig 3. Their data are fully correlated in a single straight 
line. An experimental equation is obtained as follows, 

7Ji; = O-18 Gr$ (Pr = 0.71, Gr, > IO“). (17) 

On the other hand Beckmann.[ 11 correlated his experimental 
data for using E and Grh, which is the Grashof number 
based on D, as a characteristic length. Gr,, can be converted 
to Gr, as follows : 

Gr,,, = ~{(/z)ln(~)[. Grn,. (18) 

Rearrangement of his data using ?&i and Gr, is shown in 
Fig 4. His data also agree well with equation (17). 

The authors intend to use the Rayleigh number in order 
to correlate the data for the fluids other than air. The 
Rayleigh number Rq,, is defined as follows. 

Ra, = Pr , Gr,. (19) 

?I ff2 
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Fro 3. Rearrangemeut of data obtained by Grigull et al. [4] using %-GrW. 



SHORTER COMMUNICATIONS 1367 

5- 
3- 

*x/ 

2- ,XiW 0 

HYX 

.-or< 

_Y’O ,<w 0 
0 

I- l . . 
I I I . I I I I I I I I 

3 103 3 104 3 I05 3 106 3 IO’ 3 Id 

Gr, 

FIG. 4. Rearrangement of data obtained by Beckmann [l] using %-Gr,. 

Converting Gr, of the equation (17) to Ra,,, using Pr = 0.71, 
the following equation is obtained. 

% = 0.20 Ra,* (Ra, > 71 x 1O3). (20) 

Kraussold [2] made the experiments using water and 
transformer oil. Rearrangement of his data using %and Ra, 
is shown in Fig. 5. As the Prandtl number of water or trans- 
former oil significantly changes according to the tempera- 
ture, the coincidence of the data is not so good as that for air. 
But his experimental data almost agree with the equation 
(20). 

CONCLUSIONS 

The authors propose a new method of correlating the 
heat-transfer coefficients for natural convection in horizontal 
cylindrical annuli. The heat-transfer coefficients are well 
correlated by the mean Nusselt number % and the Grashof 
number Gr, detined as follows, 

G = $!5i!y = 5 bI In (r2/r1)1 6,. [r2 In (r2/rI)] 
-p--. 

Q concl k k 

Gr = @WI - 02) [(Jrlrl)ln (r2/rJ13 
In 

V2 
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FIG. 5. Rearrangement of data obtained by Kraussold [2] using=-Ra,. 
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a,, 
F, 
h, 

M o,(t), 
rir(x, 0, 

ambient sound speed ; 
function defining the displacement surface ; 
a normal distance from the plate, slightly 
larger than the boundary-layer thickness ; 
instantaneous plate Mach number, U,(t)/a, ; 
surface mass flux normal to the plate, equal to 

P&u ; 
Reynolds number, xU,(t)/v ; 
time ; 

(4 4, 

u,(t), 

L&x, t), 

6,(x, tX 
A*(x, t). 

Cartesian coordinate system, fixed relative to 
the plate, see Fig. 1; 
velocity vector of the boundary layer flow 
field ; 
plate speed ; 

V, 

64% t)* 

Subscripts 

a constant of order unity ; 
a quantity defined by equation (5.1) : 
a quantity defined by equation (5.2): 
displacement thickness for unsteady flows with 
surface mass transfer ; 
“scaled” kinematic viscosity, being a constant 
equal to cv, ; 
density. 

e (or co), conditions at the outer edge of the boundary 
layer ; 

W conditions at the surface uf the plate; 
I. 2, conditions at x = x, and x = x1. respectively. 

NOMENCLATURE 1. INTRODUCTION 

THE CONCEPT of the displacement thickness of a viscous 
boundary layer is very useful and important, particularly in 
studying the viscous-inviscid interaction effects [l]. For 
steady flows with no surface mass transfer, the procedure 
for calculating this thickness is standard and straightforward 
(see e.g. Schlichting [2]). When the boundary layer is 
unsteady, the displacement surface can also be found by 
regarding such a surface as a fictitious solid boundary 
(impermeable) placed in the given free stream, and the 
unsteady, inviscid boundary condition on such a boundary 
leads to a normal velocity distribution just the same as that 
given by the boundary layer solutions at the outer edge. 
This was first done by Moore and Ostrach [3] who derived 
a differential equation for such a surface, valid for general, 
unsteady boundary layers, but without surface mass transfer. 

With surface mass flux, the effective displacement thick- 
ness of a boundary layer has been studied by Mann [4] for 
the simple geometry of a flat plate in parallel motion. The 
analysis was later generalized by Hayasi [5] to account for 
arbitrary geometries However these analyses were all aimed 
at steady flow situations. 

In many practical applications, such as flights of rockets, 
missiles or reentry vehicles, a continuously varying flight 
speed is often encountered. It is therefore of importance to 

* Present address: Applied Aerodynamics Division. 
U.S. Naval Ordnance Laboratory, Silver Spring, Md., 
U.S.A. 


